Extreme value theory for stochastic integrals of Legendre polynomials
نویسندگان
چکیده
For t ≥ 0, let X(t) = (X0(t), . . . , Xp(t)) , where Xi(t) denotes the integral of the ith order Legendre polyonimal with respect to the same Brownian motion described by the corresponding standard deviation (0 ≤ i ≤ p). We obtain the exact tail behavior of P ( sup0≤t≤h |X(t)| > u ) as u → ∞, and the limit distribution of sup0≤t≤T |X(t)| as T → ∞. These processes naturally arise in the context of polynomial regression models if one is interested in the limiting distribution of a test statistic designed to detect changes in the underlying regression parameters. AMS 2000 Subject Classification: Primary 62J02, Secondary 62J12, 60G70.
منابع مشابه
Convergence of Legendre wavelet collocation method for solving nonlinear Stratonovich Volterra integral equations
In this paper, we apply Legendre wavelet collocation method to obtain the approximate solution of nonlinear Stratonovich Volterra integral equations. The main advantage of this method is that Legendre wavelet has orthogonality property and therefore coefficients of expansion are easily calculated. By using this method, the solution of nonlinear Stratonovich Volterra integral equation reduces to...
متن کاملDefinite Integrals using Orthogonality and Integral Transforms
We obtain definite integrals for products of associated Legendre functions with Bessel functions, associated Legendre functions, and Chebyshev polynomials of the first kind using orthogonality and integral transforms.
متن کاملChanging Faces: The Mistaken Portrait of Legendre
Adrien-Marie Legendre (1752–1833) made great contributions to analysis, number theory, celestial mechanics, and practical science. His name is attached to the Legendre differential equation, Legendre polynomials, the Legendre transformation, the Legendre symbol in number theory, the Legendre conditions in calculus of variations, the Legendre relation for elliptic integrals, the Legendre duplica...
متن کاملResearch Article On a Class of Integrals Involving a Bessel Function Times Gegenbauer Polynomials
We provide information and explicit formulae for a class of integrals involving Bessel functions and Gegenbauer polynomials. We present a simple proof of an old formula of Gegenbauer. Some interesting special cases and applications of this result are obtained. In particular, we give a short proof of a recent result of A. A. R. Neves et al. regarding the analytical evaluation of an integral of a...
متن کاملGeneralizations and Specializations of Generating Functions for Jacobi, Gegenbauer, Chebyshev and Legendre Polynomials with Definite Integrals
In this paper we generalize and specialize generating functions for classical orthogonal polynomials, namely Jacobi, Gegenbauer, Chebyshev and Legendre polynomials. We derive a generalization of the generating function for Gegenbauer polynomials through extension a two element sequence of generating functions for Jacobi polynomials. Specializations of generating functions are accomplished throu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Multivariate Analysis
دوره 100 شماره
صفحات -
تاریخ انتشار 2009